

Polyrhythm Hero: A multimodal polyrhythm
training game for mobile phones

John K. McNulty

Sonic Arts Research Centre
Queen’s University Belfast

Belfast BT7 1NN
Northern Ireland, UK
+44 (0)28 90974829

jmcnulty05@qub.ac.uk

Advisor: Dr. Sile O’Modhrain

Abstract

This paper describes the development of Polyrhythm Hero, an iPhone game that explores
the impact of haptic, audio, and visual modalities on the learning of complex rhythmic
relationships. First, the game is explained, along with the motivating factors behind its
creation. Next, a background in both polyrhythm pedagogy and similar mobile music
applications is given to provide a context for this work. The layout of the application is
then covered, detailing the functionality of the settings mode, training mode, and gaming
mode. Next, the evolution of the technical design is covered, with particular attention to
audio, visual, and haptic programming decisions. Finally, the results of a quantitative
and qualitative study on the game’s effectiveness as a rhythm-training tool are presented.
The paper concludes with a discussion of the implications of the experiment, along with
suggestions for future work.

1. Introduction

“Polyrhythm Hero” is a new mobile rhythm training game that challenges users to tap the
two rhythms of a polyrhythm, given a combination of audio, visual, and haptic cues. A
screenshot showing the main view is shown in Figure 1. In this game, the player is
presented with two rhythms simultaneously. Each rhythm represents an opposing
subdivision of time but both eventually resolve to a common downbeat. As these
rhythms play the user is required to tap the LEFT button in time with the first rhythm and
also tap the RIGHT button in time with the second rhythm. The user’s score reflects how
accurately this task is performed. The example in Figure 1 shows a 4 against 3
polyrhythm, which means that in one measure of music the left hand will be tapping
quarter notes while the right hand must tap whole note triplets. At the player’s discretion,
the task of polyrhythm tapping can be aided by the following modalities of feedback:

Mode Description
Audio The beats of Rhythm 1 can be made to trigger a snare drum
 sample, if desired. The beats of Rhythm 2 can be made to trigger a
 ride cymbal, if desired.
Visual A static visual can be shown for each rhythm that helps to convey
 note lengths by using line segment lengths.
Haptic Vibration The iPhone can be made to vibrate on the downbeat that both
 rhythms share.

Figure 1. Main View Screenshot

Polyrhythm Hero shares commonalities with other rhythm trainers but it differentiates
itself in several ways. First, it allows the user to set the exact combination of feedback
modalities. Second, it uses an optional haptic vibration to help users identify the first
beat in every measure. Third, the software allows the user to train on any N against M
polyrhythm, where N and M can range between 1 and 16. Finally, it uses a unique static
segmented line, similar to a piano roll, to visually convey the relationship between the
two rhythms.

2. Design Motivation

The initial inspiration for this design came from attending a jazz clinic in which the
clinician used accented clapping and vocal utterances to teach the audience to count
polyrhythmic music. The clinician wanted to demonstrate how both rhythms in a
polyrhythm would periodically share a common downbeat. Because of the amount of
information the clinician needed to convey and the complex nature of that information, it
seemed a natural fit to convey this information in a multimodal manner.

Initially, the goal of this project was to create an application that would clearly illustrate
the concept of a periodic shared downbeat in a polyrhythm through use of audio, video,
and haptic cues. The iPhone was chosen for its ability to provide all of this in a very
portable footprint. Moreover, the multi-touch screen promised a very flexible interaction
interface. The initial vision was to have the user tap the screen on the shared downbeat, a
task that would hopefully reinforce the phrasing of the polyrhythm.

Once the original vision was realized, however, initial testing made it obvious that simple
downbeat recognition was neither challenging nor particularly instructive. Further
research into polyrhythm pedagogy led to the idea of tapping every beat in both rhythms
that made up the polyrhythm. This method can be attributed directly to “An Easy
Method for Understanding and Playing Polyrhythms” [9], a recent article on using
tapping to practice polyrhythm for piano.

3. Background

Polyrhythm Hero takes inspiration from previous work in complex rhythm pedagogy and
other mobile music applications. This section will examine works that have similar
elements, so as to provide a clear context for the game.

3.1 Complex Rhythm Pedagogy

Listening to aural examples is common way to introduce the concept of polyrhythm. The
more difficult task of actually playing a polyrhythm is typically taken one rhythm at a
time. While instruments such as piano and percussion require that a single musician play
both rhythms simultaneously, instruments such as the flute or clarinet cannot play two
rhythms simultaneously and thus need accompaniment for polyrhythm to occur.

In the classroom, a common way to introduce polyrhythm is to break it into its two
component rhythms. One half of the class learns to clap the first rhythm and the other
half of the class learns to clap the second. When the entire class is made to clap at the
same time, a polyrhythm is heard.

Learning to play both rhythms in a polyrhythm is a difficult task. Pedagogical
approaches to this task include walking in one time while clapping in another [1] and
tapping one rhythm with the left hand while tapping the second rhythm with the right.

3.2 Mobile Music Applications

Gillian’s Scratch-Off [2] application is one of the most relevant examples of a
multimodal music application for mobile devices. Unlike Polyrhythm Hero, it does not
deal with complex rhythms nor is it meant to be a pure rhythm trainer. However, it does
score players on their ability to perform gestures in time with music and it does explore
how combinations of feedback modalities influence game play. Other research involving
multimodality on mobile devices include SmartKom Mobile [3], The Mona Project [4]
and AmbiLearn [5]. This software also takes cues from the iPhone Ocarina [6], as both
are music generating mobile applications that rely on real-time input from the multi-touch
screen.

Tapping in time to music is a common theme in many mobile applications. Rhythm
Heaven and Rhythm Paradise are rhythm tapping games on the Nintendo DS platform.
Tap Tap Revolution for iPhone is a prime example of a mobile tapping game that
happens to also use visual animations that are derivative of games like Guitar Hero and
Rock Band. Although Polyrhythm Hero does not currently use any visual animations, the
static line segment graphics of the game are read from bottom to top and vertical distance
represents time. This is a paradigm that was popularized by Guitar Hero and its
descendants.

Possibly the most closely related mobile rhythm training game is the Dolejsky
application, “Rhythm for iPhone” [8]. Both applications are similar in that the user is
asked to tap a rhythm and their score reflects their tapping accuracy. Unlike Polyrhythm
Hero, Dolejsky uses traditional music notation and uses only one button where the user
taps just a single rhythm. No haptic feedback is available and the visual score cannot be
turned on or off. John Ferland’s “Rhythm In Reach” for iPhone is a very similar product,
based on a single tap button and traditional music notation.

One final comparison might be “Drums Challenge” for iPhone. This application is
similar to Polyrhythm Hero in that it scores based on tap accuracy, teaches rhythm
aurally, and requires users to tap more than one rhythm simultaneously. However, it uses
visual animations, it does not specifically train in polyrhythm, and has modalities and
tempos which are not configurable.

4. Software Description

Functionally, this software can be divided into a settings mode, a training mode, and a
gaming mode. Unless otherwise specified, changes made in the settings mode apply to
both the training mode and the gaming mode. These modes of operation are covered in
detail in the following subsections.

4.1 Settings Mode

Pressing the SETTINGS button on the main game screen takes the user to the Settings
screen shown in Figure 2. For convenience, all settings on this screen are stored even
when the application is exited. Consequently, at application startup, all settings are just
as they were at the end of the previous session.

The majority of the settings screen is broken into two columns, with settings for Rhythm
1 on the left and settings for Rhythm 2 on the right. The following is a detailed
description of the settings that can be turned on or off independently for each rhythm:

A. Spoken switch – when in the ON position, a human voice is heard counting the beats
of the rhythm

B. Tick-tock switch – when in the ON position, a metronome tick tock sound is heard
counting the beats of the rhythm (the tock sound on beat 1 and the tick sound on all other
beats)

C. Visual switch – when in the ON position, the display shows the segmented lines
which visually represent the note durations

D. Audio switch – when in the ON position, an audio sample is heard on the beats of the
rhythm (a snare drum sample for Rhythm 1 and a ride cymbal sample for Rhythm 2)

E. Balance slider – allows for stereo panning of all sounds for a given rhythm

F. Subdivisions slider – determines how many subdivisions the measure will be broken
up into (ONLY applies to training mode, NOT gaming mode)

Finally, there are three settings that apply to both rhythms. These settings are:

A. Tempo slider – sets the beats per minute of the more frequently occurring rhythm (so
in a 4 against 7 polyrhythm the tempo slider would be setting the beats per minute for the
rhythm with 7 subdivisions)

B. Vibration switch – when in the ON position, the iPhone vibrates for 400ms starting on
the downbeat that is shared by both rhythms. This switch has no effect on the iPod
Touch.

C. Measures Per Round textfield – determines the number of measures in a round. In the
training mode, this is the number of measures of practice that are desired. In the gaming
mode, this is the number of measures that a user must play of a given polyrhythm before
being evaluated.

Figure 2. Settings View Screenshot

4.1 Training Mode

In training mode, the user can practice any polyrhythm they choose. The exact
polyrhythm to use in training is specified by the current settings as configured in the
settings mode. Upon pressing the TRAIN button on the main game screen, the user
would hear a verbal count-in that corresponds to the faster of the two rhythms. In the
case of a 7 against 4, the count in would be “1, 2, 3, 4, 5, ready, and”. In the case of a 3
against 2, the count in would simply be “1, ready, and”. The user may then tap along
with the polyrhythm for a number of measures specified in Measures Per Round, as
specified in the settings mode. The user’s total score for each hand is displayed at the
end of the round. The user can press the TRAIN button again to repeat the same training
exercise or press the SETTINGS button to go into settings mode and change the training
parameters.

4.2 Gaming Mode

Gaming mode is very similar to training mode but it ignores the subdivisions specified in
the setting mode. Instead, gaming mode starts the user out with a simple 1 against 4
polyrhythm. If the user taps the polyrhythm with enough accuracy, they are
automatically moved to the next level. If sufficient accuracy is not achieved, the user
must repeat the current level. Sufficient accuracy in gaming mode is currently defined as
achieving a score of greater than or equal to half of the maximum possible score for each
of the two rhythms in the polyrhythm. This forces the user to have adequate accuracy
with both hands, as opposed to an averaging scheme where the user’s perfect score on
one hand might help to hide a substandard score from the other hand.

The game consists of the following ten levels, presented in order of increasingly
difficulty: 1 against 4, 2 against 4, 6 against 2, 3 against 6, 3 against 2, 3 against 4, 3
against 5, 5 against 3, 4 against 5, and finally 7 against 4. The game is over when the
user has completed all ten levels or ten minutes have elapsed, whichever comes first.
Separate scores for the accuracy of each button are recorded to the iPhone for retrieval at
the end of the game.

5. Technical Implementation

This application required two screens: a main view and a settings view. The most
straightforward way to accomplish this was to start with the Utility template provided by
Apple, which creates a generic Xcode project with two views. Determining how to best
pass information back and forth between the two views was not as straightforward. After
careful consideration, using NSUserDefaults was chosen because it allows for simple
access to the same variables from different views. Moreover, using NSUserDefaults had
the added benefit of saving the current settings whenever the application was exited.
Thus, at the next application launch all settings would be the same as they were at the end
of the previous session.

The major decisions made in coding this application are covered in the following
subsections. Although timing loop, audio, video, haptic, and game scoring are
considered separately for clarity, it is worthwhile to mention that all of these subsections
are heavily interrelated. This often made troubleshooting difficult. For example, if the
timing loop became erratic during testing, it was not immediately obvious as to whether
this was a timing loop problem or if perhaps it was due to unexpected latency in the audio
engine or latency in receiving commands from the GUI (Graphical User Interface).
Additionally, differences between the simulator and an actual iPhone made it imperative
to test on the device itself. The final design was the result of choosing the most
straightforward approach to each of the following subsections that, when combined,
yielded an application that would run on the actual device with stable timing.

5.1 Timing Loop (NSTimer versus NSThread)

A steady timing loop is central to the proper operation of this application. The central
debate was whether to use NSTimer, NSThread with a while loop, or an NSTimer within
an NSThread. Both the NSTimer and the NSThread with a while loop were attempted,
with the more stable being the NSTimer version. It should be mentioned that initially the
NSTimer version contained many NSLog statements to write to the console for
troubleshooting. Writing to the console within a timing loop takes a short amount of time
but the frequency of these write commands caused the timing to become erratic. Once
the NSLog commands were commented out, the NSTimer version of the software
produced a steady timing loop. Future work on the timing loop may investigate putting
the NSTimer within an NSThread for even greater stability.

5.2 Audio (AVAudioPlayer versus OpenAL)

The role of audio in this application can be divided into two parts: the looped
polyrhythm of snare and ride samples, and the samples that are triggered when the user
taps either the LEFT or RIGHT button. To achieve this with the smallest impact on
runtime processing power, all sound samples need to be loaded into buffers at startup.
Next, consideration was given to which iPhone audio framework would be best suited to
play the buffered audio. The simplest way to play an audio file on the iPhone is to use
the AVAudioPlayer found in the AVFoundation framework. However, the
documentation on AVAudioPlayer make its limitations clear:

"Apple recommends that you use this class for audio playback unless your application
requires stereo positioning or precise synchronization, or you are playing audio captured
from a network stream."

Since stereo positioning and precise synchronization were both of great importance, the
OpenAL framework was chosen to handle sound. The documentation for OpenAL [7]
points out that 32 note polyphony can be achieved and that sound sources need to be
mono for the stereo positioning to work. A downside to using OpenAL is that it will only
play certain file types and is very particular about the format. All of the Apple CAF
(Core Audio Format) formatted files used for this project required re-formatting before
they would play in OpenAL. The following Terminal command will properly reformat a
file for use in OpenAL:

afconvert -f caff -d LEI16@44100 -c 1 in.wav out.caf

where in.wav can be an input file of any type and out.caf is the properly formatted output
file.

Initial testing of the timing loop that triggered the snare and ride samples revealed timing
glitches. Further investigation revealed that the snare sample had a duration of 1 second
and the ride cymbal had a duration of 8 seconds. Because of the long durations of these
samples and the rapidity with which they were being triggered, the maximum polyphony

of OpenAL was soon exceeded, resulting in timing glitches. To remedy this, these
samples were taken into an audio editor and reduced in duration to 500ms each, with a
quick fade out. A retest of the timing loop with the new short duration samples revealed
that the fix had resolved the timing glitches.

5.3 Visual (UIKit versus OpenGL)

Initially, very little consideration was given to using visual stimuli to convey polyrhythm.
The only visuals in the first iteration of the design were two digital metronomes that each
displayed the current measure and beat for each rhythm. The intention was to show that
it is possible to use either the faster or slower rhythm as the basis for counting the
polyrhythm. For example, the most common way to count a 4 against 1 polyrhythm is by
treating the first rhythm like four quarter notes and treating the second rhythm as if it
were a whole note. This would traditionally be counted as “1, 2, 3, 4” with the second
rhythm being a whole note that occur on beat 1. An alternative way to count 4 against 1
would be to count the slower beat. In this method of counting, the second beat would be
counted “1, 2, 3, 4” and the first beat would be counted as four 16th notes that occur every
measure. Although the display of two digital metronomes conveyed this idea, it did so
very awkwardly and after initial game testing this idea was abandoned. Should this idea
ever be reinstated, it may be better illustrated by using metronomes similar to an analog
clock.

A second visual option that was given consideration was providing an actual written
musical score for each polyrhythm. Figure 3a shows a 3 against 2 polyrhythm in
traditional notation. Although this is feasible for a simple 3 against 2, anything more
complicated soon becomes unwieldy to convey in a written score. Compounding the
problem is that every combination of N against M would need a separate graphic. If N
and M are each allowed to range from 1 to 16, this would mean creating 240 images.
This approach was too cumbersome to be seriously considered.

(a) Traditional Notation

Left Hand x x x
Right Hand x x

(b) TUBS (Time-Unit Boxes) Notation

(c) LSL (Line Segment Length) Notation

Figure 3. A 3 against 2 polyrhythm illustrated in three different notations

A third option was to use the TUBs (Time-Unit Boxes) notation as shown in Figure 3b.
The TUBs notation is well suited to a computer application because it can be created
programmatically. However, creating the grid for TUBs involves a considerable
programming effort and also requires a large amount of horizontal screen space in order
to be legible. Because of the screen size limitations of the iPhone, it would not be
possible to use TUBs notation, despite its obvious advantages over traditional notation.

Out of necessity, the line segment length (LSL) notation shown in Figure 3c was
developed. In this style of notation, dots represent the start of a note and the length of the
line segments represent note durations. LSL is read from bottom to top, borrowing from
the Guitar Hero paradigm. This notation can be thought of as vertically oriented TUBs
notation without grid lines. It can also be thought of as similar to a piano roll. Two
advantages of this notation become obvious. First, it is easy to see note start/stops and
relative note lengths when two rhythms in LSL notation are placed next to one another.
Second, to provide LSL style notation for every possible N against M polyrhythm would
only require the creation of 16 static images (both N and M allowed to move between 1
and 16). Given the limited screen space of the iPhone and considering the relative ease
of implementation, LSL notation was chosen for visual stimuli.

Figure 4. Dividing a line into N equal segments

Figure 4 shows a line divided into N equal segments, where N ranges from 1 to 16.
These 16 images were all that was necessary for a complete LSL implementation.

5.4 Haptics (standard vibration versus jailbroken vibration)

The standard AudioToolbox framework allows for simple access to the iPhone’s
vibration feature. The actual call is:

AudioServicesPlaySystemSound (kSystemSoundID_Vibrate);

The simplicity of implementation comes at the cost of flexibility. Using the standard API
(Application Programming Interface), it is not possible to change the vibration intensity
or shorten its standard duration of 400ms. The only way to gain greater control over the
vibration is to “jailbreak” the iPhone. For the first iteration of haptic design, a decision
was made to work within the confines of the standard API. To use this one vibration
effectively, the implementation would need to consider that vibrations should be spaced
far enough apart that they would not overlap. Also, with only one vibration there could
be no effective haptic distinction between the first and second rhythm. Given these
considerations, the haptic vibration was assigned to the downbeat that both rhythms
shared. This vibration would reinforce the first beat of a measure, which would always
be a beat on which the user should press both the LEFT and RIGHT button
simultaneously. Moreover, at a frequency of only once per measure, these vibrations
would only be at risk of overlapping at extremely high tempos (when the length of a
measure approaches only 400ms).

5.5 Game scoring (array with true beat times versus no array)

Very careful consideration was given to developing a fair and accurate game scoring
algorithm. A diagram showing how taps are scored can be seen in Figure 5. The closer
the user tap time is to the calculated time of the actual beat, the higher the score. User
taps that fall within the “fine” region receive +6 points, those within the “finer” region
receive +8 points, and those within the “finest” region receive +10 points. This method
of scoring is similar to a game of darts, where the bull’s eye has the highest point value
and the points decrease in quantized levels as one moves further from the dartboard
center. An accuracy of +/- 200 ms was required for the “fine” region, +/- 50 ms for the
“finer” region, and +/- 10 ms for the “finest” region.

Rewarding accuracy is a step in the right direction but does not cover all scenarios fairly.
A user should be penalized if they simply tap as often as possible in the hopes that a large
number of the taps will score points. Also, completely missing a beat and not tapping at
all should also result in penalty points. It was decided that both grossly inaccurate taps
(ie. taps in the dead zone) and beats that go by without any tap should both be penalized
with a score of -10 points. Figure 5 shows three tap pattern examples with their
corresponding scores to help illustrate the scoring mechanism.

Figure 5. Example Game Scoring

The following explanation gives the specifics of the scoring algorithm. Before the start
of a round, two arrays are filled: one containing the times of all the expected beats in the
first rhythm and another containing the times of all of the expected beats in the second
rhythm. These are declared as follows:

NSMutableArray *rhythm1TrueBeatTimes;
NSMutableArray *rhythm2TrueBeatTimes;

Anytime that the user taps the LEFT button the time of the button tap is compared to the
times in rhythm1TrueBeatTimes and is scored accordingly. If the user tap time is even
within the “fine” region, the time representing that downbeat is removed from the array.
Anytime that the user taps the RIGHT button the time of the button tap is compared to

the times in rhythm2TrueBeatTimes and is scored accordingly. Again, if the user tap
time is even within the “fine” region, the time representing that downbeat is removed
from the array. The reason for removing items from these arrays is threefold. First, it
reduces the size of the array that must be searched at every button press. Second, it
prevents a user from scoring twice by tapping twice in rapid succession very close to the
actual beat. Finally, any item left in one of these arrays at the end of a round represents a
beat that the user let pass without tapping at all. The size of the rhythm1TrueBeatTimes
array is calculated at the end of the round, multiplied by ten, and subtracted from the
user’s score for the first rhythm. Likewise, the size of the rhythm2TrueBeatTimes array
is calculated at the end of the round, multiplied by ten, and subtracted from the user’s
score for the second rhythm.

6. Experiment

An experiment was conducted to determine if playing the game with all modalities of
feedback turned on would improve a participant’s ability to tap polyrhythms. The 12
participants that agreed to the study were tested on an individual basis in a soundproof
studio in the basement of the SARC (Sonic Arts Research Centre) building. The
participants were all SARC graduate students, 10 male and 2 female. None of the these
individuals indicated an uncorrected visual, auditory, or motor impairment that might
impact game play. There were 10 right-handed, 1 left-handed, and 1 ambidextrous
participant. When asked to indicate a main instrument there were 3 guitar, 3 piano, 2
flute, 1 percussion, 1 oboe, and 1 bass guitar player. One participant indicated “none” as
a main instrument.

Participants were asked to fill out a pre-experiment questionnaire in which they
subjectively rated themselves from 0 to 10 in level of musical experience, sense of
rhythm, video gaming experience, and finally either Guitar Hero or Rock Band
experience. Across all participants, the mean and standard deviation for each of these
categories is shown in Table 1.

Table 1. Pre-Experiment Questionnaire Results
Category Mean Standard Deviation
Level of Musical Experience 6.95 2.41
Sense of Rhythm 6.1 1.90
Video Gaming Experience 3.62 2.37
Guitar Hero or Rock Band Experience 0.47 2.47

To ensure consistency, every participant used the same iPhone 3G running OS 3.0 with
Polyrhythm Hero version AT9 and audio running out of the built-in speaker at three-
quarter of full volume. The settings shown in Table 2 were used for every participant.

Table 2. Game Settings Used for Experiment
Parameter Setting
Tempo: 107 bpm in reference to the faster rhythm.
Count-in: Recorded verbal count in that corresponds to the faster
 rhythm. In the case of a 7 against 4, the count in would be
 “1, 2, 3, 4, 5, ready, and”. In the case of a 3 against 2, the
 count in would be “1, ready, and”.
Spoken count Off for both rhythms.
Tick-tock count Off for both rhythms.
Audio On for both rhythms (Rhythm 1 triggers a snare sampe,
 Rhythm 2 triggers a ride ride cymbal)
Static Visual On for both rhythms.
Haptic Vibration On, which means that a vibration occurs on the downbeat
 that both rhythms share.
Balance Center panned for both rhythms.
Subdivisions Varies with each example.
Measures Per Round 2

Following an explanation of the game, participants were allowed to train on an 8 against
4, a 7 against 2, and a 2 against 7 polyrhythm for a combined total of 6 minutes. These
particular combinations were chosen because they were not amongst the polyrhythms that
appeared in the actual game. At the end of the training period, the participant was
secluded in the studio room and left to play the game until either they had completed all
ten polyrhythms or ten minutes had elapsed, whichever came first. The round score
versus level scatter plot data for all twelve participants is shown in Appendix A, Figures
A1 through A12. Analysis of this data shows that the majority of participants improved
upon their baseline score for each polyrhythm with successive plays.

An anomaly in this trend, that can be seen clearly in the scatter plots, was the occasional
baseline followed by one or more lower scores before the scores began to increase and
eventually surpass the baseline. The post-experiment questionnaire revealed a possible
explanation for this anomaly. Several participants claimed to first pay attention to the
visual line segments and do their best to play the polyrhythm based primarily on visual
cues. However, if they were unsuccessful, they would then focus primarily on the audio
as a guide. The re-focusing of attention on a different modality could explain why some
scores got worse before they got better.

One final piece of significant data on player improvement is that participant 5 spent 96
rounds attempting level 5 (a 3 against 2 polyrhythm). This participant was the only one
of twelve not to improve on this level with successive plays. The fact that this participant
listed “none” as a primary instrument may explain this finding. A larger participant pool
would be beneficial to help identify the cause of these anomalies.

For users that completed all 10 levels in less than 10 minutes, the average number of
attempts at each level is shown in Table 3. This data indicates that participants had the

most difficulty with the 4 against 5 polyrhythm, followed closely by 3 against 4 and then
3 against 5.

Table 3. Average Number of Rounds Per Level for
Participants Completing All 10 Levels

LEVEL POLYRHYTHM AVERAGE NUMBER OF ATTEMPTS
1 1 against 4 1.5
2 2 against 4 1.625
3 6 against 2 1.25
4 3 against 6 1.125
5 3 against 2 2.5
6 3 against 4 6.375
7 3 against 5 5.625
8 5 against 3 2.75
9 4 against 5 6.5
10 7 against 4 3.75

After either level 10 was passed or 10 minutes had elapsed, the participant was asked to
fill out a post-experiment questionnaire in which they were to subjectively rate statements
from 0 to 10. The questions, along with mean and standard deviation across all
participants are shown in Table 4.

Table 4. Post-Experiment Questionnaire Results
Category Mean Standard Deviation
Game increased my understanding of polyrhythm 7.81 3.34
Game helped me to play polyrhythms better 8.06 1.34
Audio was helpful in playing the game 7.45 1.48
Video was helpful in playing the game 7.16 2.32
Haptic vibration was helpful in playing the game 1.52 3.78

According to the post-experiment survey, the most useful modality of feedback was
audio, with video a close second and haptic a distant third. To improve the haptic
feedback, one user suggested a vibration of shorter duration. Perhaps haptics would be
more useful for users that are depending on a downbeat in longer phrases or when the
audio and video modalities are not present. It is interesting to note that the two
participants that rated haptic feedback as extremely useful had the lowest scores. Perhaps
paying attention to the vibration actually hurt scores.

Also according to the post-experiment survey, users were split as to whether animated
visuals would make a better training tool. Proponents of animation argued that it would
be easier to follow but opponents of animation argued that the current setup (static visual)
makes the user rely more on the audio and is more closely tied to skills traditionally
associated with musical training.

7. Future Work

There are several improvements on the game itself that are worth considering. First,
experimental results suggest that the duration of the haptic vibration needs to be
shortened in order to provide a more defined, impulse-like response. Currently, this is
not possible with the standard API, but future releases of the iPhone SDK (Software
Development Kit) may provide access to this functionality. Second, it would be very
straightforward to add a difficulty setting (easy / medium / hard) that would simply
reduce the size of the scoring bull’s eye as the difficulty increased. This would give the
user more control over the game and would be a simple way to add more challenge for
advanced players. Third, consideration should be given to animating the static visual so
that the line segment that represents the current beat is always shown in a different color.
In the post-experiment survey, participants were split on whether animating the static
visual would improve the game as a training tool. Consequently, if visual animation were
to be added, a corresponding switch on the settings view would need to be added so that
it could be turned on or off with ease. A final alteration worth considering is a version of
the game that gradually removes modalities as the game progresses. The game might
start off with animated visual, audio, and haptic cues. Gradually, the animated visual
would turn static and then eventually disappear completely. The audio might get softer
and softer and then be inaudible. By the end, users would be challenged to tap complex
polyrhythms with only a single audio or haptic downbeat as a guide. This would
certainly be a challenge for even advanced players and might prove to be a great training
tool.

Beyond the preliminary study, numerous experiments can be run on even the current
version of Polyrhythm Hero. An obvious follow up study is to experimentally determine
which combinations of modalities are most effective in polyrhythm tap training. In the
preliminary study, participants were asked to rate the relative effectiveness of the audio,
visual, and haptic feedback. Because of the ease with which the individual modalities
can be switched on or off, the relative effectiveness of each could be tested by increasing
the participant pool and breaking them into the groups shown in Table 5.

Table 5. Possible Test Groups
Group Audio Visual Haptic

A x
B x
C x
D x x
E x x
F x x
G x x x

With sufficient participants in each group it would be possible to compare how, for
example, Group A (audio only) improves over time as compared with Group D (audio
and visual only).

Another worthwhile experiment might involve studying the long-term impact of game
play. How would regular game play improve polyrhythm tapping over a period of days,
weeks, or even months? 

8. Conclusion

Initial experimental evidence and participant feedback suggests that this game is useful as
a polyrhythm-training tool for instrumentalists. Based on participants’ subjective
modalities evaluation, the audio and visual cues were extremely helpful in game play.
The haptic vibration did not fare as well, suggesting that the particulars of the haptic
implementation should be revisited. Further testing with a larger participant pool could
experimentally determine which modalities are most helpful in tapping a polyrhythm.

References
[1]  Deep Rhythm Lesson website.  http://www.bobbrozman.com/tip_rhythm.html 
[2]  N. Gillian, S. O’Modhrain, and G. Essl.  “Scratch‐Off: A gesture based mobile music 
game with tactile feedback”  in Proceedings of the International Conference on New 
Interfaces for Musical Expression (NIME09), Pittsburgh, USA, pp. 308‐311, 2009. 
[3]  R. Malaka, J. Haeussler, and H. Aras.  “SmartKom mobile: intelligent ubiquitous 
user interaction” in Proceedings of the 9th International Conference on Intelligent 
User interfaces, Madeira, Portugal, pp. 310‐312.  2004.   
[4]  H. Anegg, G. Niklfeld, M. Pucher, R. Schatz, R. Simon, F. Wegscheider, T. Dangl, 
and M. Jank.  “Multimodal Interfaces in Mobile Devices – The Mona Project” in 
Proceedings of the Workshop on Emerging Applications for Wireless and Mobile 
Access, NY.  2004. 
[5]  J. Hyndman, T. Lunney, and P. McKevitt.  “AmbiLearn: Ambient Intelligent 
Multimodal Learning Environment for Children” in Proceedings of the 10th Annual 
PostGraduate Symposium On The Convergence of Telecommunications, Networking 
& Broadcasting, PG Net, Liverpool, pp. 277‐282,  2009. 
[6]  G. Wang.  “Designing Smule’s Ocarina: The iPhone’s Magic Flute” in Proceedings 
of the International Conference on New Interfaces for Musical Expression (NIME09), 
Pittsburgh, USA, pp. 303‐307, 2009. 
[7]  OpenAL website. http://connect.creativelabs.com/openal/default.aspx   
[8]  Rhythm website. http://www.dolejsky.com/rhythm/ 
[9]  “An Easy Method for Understanding and Playing Polyrhythms” by Bob Hinz.  Mel 
Bay Publications, Inc.  Creative Keyboard webzine.  Feb 2008. 
 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Appendix A. Round Score Versus Level Scatter Plots

Figure A1. Participant 1 Round Score Versus Level

Figure A2. Participant 2 Round Score Versus Level

Figure A3. Participant 3 Round Score Versus Level

Figure A4. Participant 4 Round Score Versus Level

Figure A5. Participant 5 Round Score Versus Level

Figure A6. Participant 6 Round Score Versus Level

Figure A7. Participant 7 Round Score Versus Level

Figure A8. Participant 8 Round Score Versus Level

Figure A9. Participant 9 Round Score Versus Level

Figure A10. Participant 10 Round Score Versus Level

Figure A11. Participant 11 Round Score Versus Level

Figure A12. Participant 12 Round Score Versus Level

 

